Defining the minimal domain of the Plasmodium falciparum protein MESA involved in the interaction with the red cell membrane skeletal protein 4.1.

نویسندگان

  • B J Bennett
  • N Mohandas
  • R L Coppel
چکیده

During part of its life cycle, the protozoan parasite Plasmodium falciparum lives within the human red blood cell and modifies both the structural and functional properties of the red cell. It does this by synthesizing a number of polypeptides that it transports into the red cell cytoplasm and to the red cell membrane. One of these transported proteins, MESA (mature parasite-infected erythrocyte surface antigen), is anchored to the red cell membrane by noncovalent interaction with erythrocyte protein 4.1. We have utilized a combination of in vitro transcription and translation and a membrane binding assay to identify the protein sequence involved in anchoring MESA to the membrane. Labeled fragments of different regions of the MESA protein were evaluated for their ability to bind to inside-out vesicle membrane preparations of human red cells. Binding was dependent on the presence of red cell membrane proteins and was abolished either by trypsin treatment or by selective depletion of membrane proteins. Binding was specific and could be inhibited by the addition of competing protein, with an IC50 of (6.3 +/- 1.2) x 10(-7) M, indicative of a moderate affinity interaction. Fractionation studies demonstrated that binding fragments interacted most efficiently with membrane protein fractions that had been enriched in protein 4.1. Binding inhibition experiments using synthetic peptides identified the binding domain of MESA for protein 4.1 as a 19-residue sequence near the amino terminus of MESA, a region capable of forming an amphipathic helix.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mature parasite-infected erythrocyte surface antigen (MESA) of Plasmodium falciparum binds to the 30-kDa domain of protein 4.1 in malaria-infected red blood cells.

The Plasmodium falciparum mature parasite-infected erythrocyte surface antigen (MESA) is exported from the parasite to the infected red blood cell (IRBC) membrane skeleton, where it binds to protein 4.1 (4.1R) via a 19-residue MESA sequence. Using purified RBC 4.1R and recombinant 4.1R fragments, we show MESA binds the 30-kDa region of RBC 4.1R, specifically to a 51-residue region encoded by ex...

متن کامل

Role of the Plasmodium falciparum mature-parasite-infected erythrocyte surface antigen (MESA/PfEMP-2) in malarial infection of erythrocytes.

During intraerythrocytic growth of Plasmodium falciparum, several parasite proteins are transported from the parasite to the erythrocyte membrane, where they bind to membrane skeletal proteins. Mature-parasite-infected erythrocyte surface antigen (MESA) has previously been shown to associate with host erythrocyte membrane skeletal protein 4.1. Using a spontaneous mutant of P falciparum that has...

متن کامل

Genetic Diversity Block 2 of Surface Protein-1 in Plasmodium Falciparum Merozoite by Nested-PCR Method in Southeastern Iran

Abstract       Background and Objectives: Plasmodium falciparum merozoite surface protein-1 (PfMSP-1) is a promising vaccine against malaria during its blood stages which play an important role in immunity to this disease. Polymorphic nature of this gene is a major obstacle in making an effective vaccine against malaria. In this study, the genetic diversity of Plasmodi...

متن کامل

An erythrocyte cytoskeleton-binding motif in exported Plasmodium falciparum proteins.

Binding of exported malaria parasite proteins to the host cell membrane and cytoskeleton contributes to the morphological, functional, and antigenic changes seen in Plasmodium falciparum-infected erythrocytes. One such exported protein that targets the erythrocyte cytoskeleton is the mature parasite-infected erythrocyte surface antigen (MESA), which interacts with the N-terminal 30-kDa domain o...

متن کامل

Red cell membrane protein abnormalities as defined by sds-page among patients with anaemia in a west african region hospital practice

Background: Erythrocytes require an ability to deform and to withstand shear stress while negotiating the microcirculation. These properties are largely due to their excess surface area per volume and the characteristics of the membrane’s protein. Deficiencies of these proteins are associated with chronic haemolysis. Methods: This was a cross sectional  study aimed at determining the prevalenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 272 24  شماره 

صفحات  -

تاریخ انتشار 1997